中国畜牧兽医 ›› 2025, Vol. 52 ›› Issue (11): 5180-5191.doi: 10.16431/j.cnki.1671-7236.2025.11.015
李甲伟1, 李袁飞2, 肖艳清1, 陈清华1
修回日期:2025-06-17
出版日期:2025-11-05
发布日期:2025-10-30
通讯作者:
陈清华
E-mail:chqh314@163.com
作者简介:李甲伟,E-mail:1594945925@qq.com。
基金资助:LI Jiawei1, LI Yuanfei2, XIAO Yanqing1, CHEN Qinghua1
Revised:2025-06-17
Online:2025-11-05
Published:2025-10-30
摘要: 脂肪组织是动物体内的重要组成部分,脂质代谢过程对畜禽动物肉品质以及动物和人类健康有重要影响。近年来,广泛的体内和体外研究均表明,天然多酚作为一种天然的活性物质,在调控脂质代谢,维护脂质代谢稳态方面展示出良好效果。作者系统阐述了天然多酚调节动物脂质代谢的分子机制,其核心在于通过多重互作途径实现协同调控:介导miRNAs(如miR-122、miR-33、miR-103/107)表达,影响脂质代谢关键基因(如脂肪酸合酶、肉碱棕榈酰转移酶1α、过氧化物酶体增殖物激活受体α、固醇调节元件结合蛋白1)的转录与翻译;调控AMPK信号通路(直接或间接通过脂联素受体、SIRT1/LKB1-AMPK信号通路等),在肝脏中减少脂肪合成、促进脂肪酸氧化,在脂肪组织中诱导白色脂肪组织褐变、激活棕色脂肪组织产热;干扰细胞周期进程(诱导凋亡或周期停滞于G0/G1期),抑制有丝分裂克隆扩增,从而抑制脂肪生成;重塑肠道微生物组成(如增加拟杆菌属和阿克曼菌属相对丰度,提高厚壁菌门/拟杆菌门比值,减少梭菌属相对丰度等);减轻炎症反应(抑制核因子κB等通路,减少肿瘤坏死因子-α、白细胞介素-6等促炎因子);增强抗氧化能力(激活核因子E2相关因子2通路,提高超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶活性,降低活性氧和丙二醛水平);减少能量摄入(调节瘦素敏感性、阿黑皮素原/刺鼠相关蛋白神经元活性及胆囊收缩素分泌)。针对上述多维度机制的解析,旨在为天然多酚在畜禽健康养殖与肉品质改良中的实践应用提供理论依据
中图分类号:
李甲伟, 李袁飞, 肖艳清, 陈清华. 天然多酚调节动物脂质代谢的作用机制研究进展[J]. 中国畜牧兽医, 2025, 52(11): 5180-5191.
LI Jiawei, LI Yuanfei, XIAO Yanqing, CHEN Qinghua. Research Advance of the Mechanism of Natural Polyphenols in Regulating Lipid Metabolism in Animals[J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(11): 5180-5191.
| [1] TARJUELO L,PARDO J E,ÁLVAREZ-ORTÍ M,et al.Development of seed-oil based dried sausages,considering physicochemical and nutritional quality and the role of food neophobia[J].Nutrients,2022,14(15):3106. [2] HOU B Y,ZHAO Y R,QIANG G F,et al.Puerarin mitigates diabetic hepatic steatosis and fibrosis by inhibiting TGF-β signaling pathway activation in type 2 diabetic rats[J]. Oxidative Medicine and Cellular Longevity,2018,2018:13. [3] LIU J,SONG Y,ZHAO Q,et al.Effects of tartary buckwheat protein on gut microbiome and plasma metabolite in rats with high-fat diet[J]. Foods,2021,10(10):2457. [4] SERRA D,ALMEIDA L M,DINIS T C.Dietary polyphenols:A novel strategy to modulate microbiota-gut-brain axis[J].Trends in Food Science & Technology,2018,78:224-233. [5] HOSSEN I,HUA W,TING L,et al.Phytochemicals and inflammatory bowel disease:A review[J].Critical Reviews in Food Science and Nutrition,2022,60(8):1321-1345. [6] CHEN L Y,PU Y J,XU Y,et al.Anti-diabetic and anti-obesity:Efficacy evaluation and exploitation of polyphenols in fruits and vegetables[J]. Food Research International,2022,157:111202. [7] AHMADIFAR E,YOUSEFI M,KARIMI M,et al.Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health:An overview[J]. Reviews in Fisheries Science & Aquaculture,2021,29(4):478-511. [8] LOSADA-BARREIRO S,BRAVO-DIAZ C.Free radicals and polyphenols:the redox chemistry of neurodegenerative diseases[J]. European Journal of Medicinal Chemistry,2017,133:379-402. [9] PALIERSE E,MASSE S,LAURENT G,et al.Synthesis of hybrid polyphenol/hydroxyapatite nanomaterials with anti-radical properties[J].Nanomaterials,2022,12(20):3588. [10] ZHANG S Y,XU M Y,ZHANG W X,et al.Natural polyphenols in metabolic syndrome:Protective mechanisms and clinical applications[J].International Journal of Molecular Sciences,2021,22(11):6110. [11] WANG Z,WANG W Q,ZHU C L,et al.Evaluation of antioxidative and neuroprotective activities of total flavonoids from sea buckthorn (Hippophae rhamnoides L.)[J].Frontiers in Nutrition,2022,9:861097. [12] WANG T Y,LI Q,BI K S.Bioactive flavonoids in medicinal plants:Structure,activity and biological fate[J].Asian Journal of Pharmaceutical Sciences,2018,13(1):12-23. [13] BEŠLO D,GOLUBI AĆG N,RASTIJA V,et al.Antioxidant activity,metabolism,and bioavailability of polyphenols in the diet of animals[J].Antioxidants,2023,12(6):1141. [14] WANG S H,DU Q Y,MENG X L,et al.Natural polyphenols:A potential prevention and treatment strategy for metabolic syndrome[J]. Food & Function,2022,13(19):9734-9753. [15] CHEN J,HUANG Z,CAO X,et al.Plant-derived polyphenols in sow nutrition:An update[J]. Animal Nutrition,2023,12:96-107. [16] RASHMI H B,NEGI P S.Phenolic acids from vegetables:A review on processing stability and health benefits[J]. Food Research International,2020,136:109298. [17] MEKKY R H,ABDEL-SATTAR E,SEGURA-CARRETERO A,et al.Phenolic compounds from sesame cake and antioxidant activity:A new insight for agri-food residues’ significance for sustainable development[J].Foods,2019,8(10):432. [18] PECYNA P,WARGULA J,MURIAS M,et al.More than resveratrol:New insights into stilbene-based compounds[J].Biomolecules,2020,10(8):1111. [19] CUI Q H,DU R K,LIU M M,et al.Lignans and their derivatives from plants as antivirals[J].Molecules,2020,25(1):183. [20] CHAN E W C,WONG S K,CHAN H T.A short review on the chemistry,pharmacological properties and patents of obovatol and obovatal (neolignans) from Magnolia obovata[J].Natural Product Sciences,2021,27(3):141-150. [21] ARNER P,KULYTÉ A.MicroRNA regulatory networks in human adipose tissue and obesity[J].Nature Reviews Endocrinology,2015,11(5):276-288. [22] ESAU C,DAVIS S,MURRAY S F,et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J].Cell Metabolism,2006,3(2):87-98. [23] DÁVALOS A,GOEDEKE L,SMIBERT P,et al.miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling[J].Proceedings of the National Academy of Sciences,2011,108(22):9232-9237. [24] GRACIA A,FERNÁNDEZ-QUINTELA A,MIRANDA J,et al.Are miRNA-103,miRNA-107 and miRNA-122 involved in the prevention of liver steatosis induced by resveratrol ?[J].Nutrients,2017,9(4):360. [25] SU D X,LIU H S,QI X Y,et al.Citrus peel flavonoids improve lipid metabolism by inhibiting miR-33 and miR-122 expression in HepG2 cells[J].Bioscience,Biotechnology,and Biochemistry,2019,83(9):1747-1755. [26] YU M H,HUNG T W,WANG C C,et al.Neochlorogenic acid attenuates hepatic lipid accumulation and inflammation via regulating miR-34a in vitro[J].International Journal of Molecular Sciences,2021,22(23):13163. [27] JOVEN J,ESPINEL E,RULL A,et al.Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice[J].Biochimica et Biophysica Acta (BBA)-General Subjects,2012,1820(7):894-899. [28] 敖娜,王育川,梁玉文,等.茶多酚对马岗鹅肝脏脂质代谢及抗氧化能力的影响[J].饲料研究,2024,47(23):52-57.AO N,WANG Y C,LIANG Y W,et al.Effects of tea polyphenols on lipid metabolism and antioxidant capacity in the liver of Magang geese[J].Feed Research,2024,47(23):52-57.(in Chinese) [29] FRANKO A,HARTWIG S,KOTZKA J,et al.Identification of the secreted proteins originated from primary human hepatocytes and HepG2 cells[J].Nutrients,2019,11(8):1795. [30] HAN H,WANG M Y,ZHONG R Q,et al.Depletion of gut microbiota inhibits hepatic lipid accumulation in high-fat diet-fed mice[J].International Journal of Molecular Sciences,2022,23(16):9350. [31] TIE F F,WANG J F,LIANG Y X,et al.Proanthocyanidins ameliorated deficits of lipid metabolism in type 2 diabetes mellitus via inhibiting adipogenesis and improving mitochondrial function[J].International Journal of Molecular Sciences,2020,21(6):2029. [32] 王萱,陈泽豪,石玉祥,等.迷迭香提取物对蛋鸡产蛋性能、血清指标和肝脏脂质代谢的影响[J].动物营养学报,2025,37(2):1011-1021.WANG X,CHEN Z H,SHI Y X,et al.Effects of rosemary extract on laying performance,serum indicators and liver lipid metabolism of laying hens[J].Chinese Journal of Animal Nutrition,2025,37(2):1011-1021.(in Chinese) [33] LI D M,LIU F,WANG X J,et al.Apple polyphenol extract alleviates high-fat-diet-induced hepatic steatosis in male C57BL/6 mice by targeting LKB1/AMPK pathway[J].Journal of Agricultural and Food Chemistry,2019,67(44):12208-12218. [34] LI D M,CUI Y,WANG X J,et al.Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling[J].Phytotherapy Research,2021,35(3):1416-1431. [35] SUN Z,LIU D,AN S,et al.Effects of acorns on fatty acid composition and lipid metabolism in adipose tissue of Yuxi Black pigs[J]. Animals,2024,14(22):3271. [36] ZHANG L,ZHANG J,ZANG H,et al.Dietary pterostilbene exerts potential protective effects by regulating lipid metabolism and enhancing antioxidant capacity on liver in broilers[J]. Journal of Animal Physiology and Animal Nutrition,2024,108(4):921-933. [37] LIU Y,PENG Y,CHEN C,et al.Flavonoids from mulberry leaves inhibit fat production and improve fatty acid distribution in adipose tissue in finishing pigs[J].Animal Nutrition,2024,16:147-157. [38] LI X,YANG L,LI J,et al.A flavonoid-rich Smilax china L.extract prevents obesity by upregulating the adiponectin-receptor/AMPK signalling pathway and modulating the gut microbiota in mice[J].Food & Function,2021,12(13):5862-5875. [39] CUI Y,MO Z Y,JI P L,et al.Benzene exposure leads to lipodystrophy and alters endocrine activity in vivo and in vitro[J].Frontiers in Endocrinology,2022,13:937281. [40] ELEWA Y H A,ICHII O,KON Y.Comparative analysis of mediastinal fat-associated lymphoid cluster development and lung cellular infiltration in murine autoimmune disease models and the corresponding normal control strains[J]. Immunology,2016,147(1):30-40. [41] GHOSHAL S,MUKHERJEE S,CHAKRABORTY M,et al.Whole body Ip6k1 deletion protects mice from age-induced weight gain,insulin resistance and metabolic dysfunction[J].International Journal of Molecular Sciences,2022,23(4):2059. [42] CAROBBIO S,GUENANTIN A C,BAHRI M,et al.Unraveling the developmental roadmap toward human brown adipose tissue[J].Stem Cell Reports,2021,16(3):641-655. [43] SHIH D M,MENG Y,SALLAM T,et al.PON2 deficiency leads to increased susceptibility to diet-induced obesity[J].Antioxidants,2019,8(1):19. [44] LIU J W,ZHAO Y Y,HUANG C,et al.Prenylated flavonoid-standardized extract from seeds of Psoralea corylifolia L.activated fat browning in high-fat diet-induced obese mice[J].Phytotherapy Research,2019,33(7):1851-1864. [45] DING Y N,ZHANG L L,YAO X F,et al.Honokiol alleviates high-fat diet-induced obesity of mice by inhibiting adipogenesis and promoting white adipose tissue browning[J].Animals,2021,11(6):1493. [46] LAI J F,QIAN Q Y,DING Q C,et al.Activation of AMP-activated protein kinase-sirtuin 1 pathway contributes to salvianolic acid A-induced browning of white adipose tissue in high-fat diet fed male mice[J].Frontiers in Pharmacology,2021,12:614406. [47] CHENG L,LU S H I,CHANGHAO H E,et al.Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway[J].Chinese Journal of Natural Medicines,2023,21(11):812-829. [48] KOBAYASHI M,OHSUGI M,SASAKO T,et al.The RNA methyltransferase complex of WTAP,METTL3,and METTL14 regulates mitotic clonal expansion in adipogenesis[J].Molecular and Cellular Biology,2018,38(16):e00116-e00118. [49] ZHAO Y,PAN J F,CAO C W,et al.RNF20 affects porcine adipocyte differentiation via regulation of mitotic clonal expansion[J].Cell Proliferation,2021,54(12):e13131. [50] WU L Y,CHEN C W,CHEN L K,et al.Curcumin attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation[J].Nutrients,2019,11(10):2307. [51] HSU C L,HUANG S L,YEN G C.Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity[J].Journal of Agricultural and Food Chemistry,2006,54(12):4191-4197. [52] CHAN C Y,WEI L,CASTRO-MUÑOZLEDO F,et al.(-)-epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression[J].Life Sciences,2011,89(21-22):779-785. [53] TANG Q Q,OTTO T C,LANE M D.CCAAT/enhancer-binding protein β is required for mitotic clonal expansion during adipogenesis[J].Proceedings of the National Academy of Sciences,2003,100(3):850-855. [54] KIM M A,KANG K,LEE H J,et al.Apigenin isolated from Daphne genkwa Siebold et Zucc.inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion[J].Life Sciences,2014,101(1-2):64-72. [55] MOLONIA M S,SALAMONE F L,MUSCARÀ C,et al.Regulation of mitotic clonal expansion and the rmogenic pathway are involved in the antiadipogenic effects of cyanidin-3-O-glucoside[J].Frontiers in Pharmacology,2023,14:1225586. [56] LEE M H,KIM H M,CHUNG H C,et al.Licorice extract suppresses adipogenesis through regulation of mitotic clonal expansion and adenosine monophosphate‐activated protein kinase in 3T3-L1 cells[J].Journal of Food Biochemistry,2020,44(12):e13528. [57] YU H S,KIM W J,BAE W Y,et al.Inula britannica inhibits adipogenesis of 3T3-L1 preadipocytes via modulation of mitotic clonal expansion involving ERK 1/2 and Akt signaling pathways[J].Nutrients,2020,12(10):3037. [58] COX T O,LUNDGREN P,NATH K,et al.Metabolic control by the microbiome[J].Genome Medicine,2022,14(1):1-13. [59] MOMPEO O,SPECTOR T D,MATEY HERNANDEZ M,et al.Consumption of stilbenes and flavonoids is linked to reduced risk of obesity independently of fiber intake[J].Nutrients,2020,12(6):1871. [60] CORRA T A F,ROGERO M M,HASSIMOTTO N M A,et al.The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases[J].Frontiers in Nutrition,2019,6:188. [61] WALKER A W,PARKHILL J.Fighting obesity with bacteria[J].Science,2013,341(6150):1069-1070. [62] FORSTER G M,STOCKMAN J,NOYES N,et al.A comparative study of serum biochemistry,metabolome and microbiome parameters of clinically healthy,normal weight,overweight,and obese companion dogs[J]. Topics in Companion Animal Medicine,2018,33(4):126-135. [63] GUO J L HAN X,TAN H Y,et al.Blueberry extract improves obesity through regulation of the gut microbiota and bile acids via pathways involving FXR and TGR5[J].iScience,2019,19:676-690. [64] WANG Q,WANG Z,SHANG B,et al.Tea polyphenols improve lipid deposition via modulation of gut microbiota in rats and Ningxiang pigs[J].Journal of Functional Foods,2024,113:106049. [65] ZHU Y,ZHANG J Y,WEI Y L,et al.The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats[J].Nutrition & Metabolism,2020,17(1):1-15. [66] QUEIPO-ORTUÑO M I,BOTO-ORDÓÑEZ M,MURRI M,et al.Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers[J].The American Journal of Clinical Nutrition,2012,95(6):1323-1334. [67] WANG L,ZENG B,LIU Z,et al.Green tea polyphenols modulate colonic microbiota diversity and lipid metabolism in high-fat diet treated HFA mice[J].Journal of Food Science,2018,83(3):864-873. [68] WANG S,MOUSTAID-MOUSSA N,CHEN L X,et al.Novel insights of dietary polyphenols and obesity[J].The Journal of Nutritional Biochemistry,2014,25(1):1-18. [69] KANG L,HENG W,YUAN A,et al.Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes:Relative to inhibition of inflammatory responses[J].Biochimie,2010,92(7):789-796. [70] MOLONIA M S,OCCHIUTO C,MUSCARÀ C,et al.Cyanidin-3-O-glucoside restores insulin signaling and reduces inflammation in hypertrophic adipocytes[J]. Archives of Biochemistry and Biophysics,2020,691:108488. [71] KANG B,KIM C Y,HWANG J,et al.Punicalagin,a pomegranate-derived ellagitannin,suppresses obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 signaling pathway[J].Molecular Nutrition & Food Research,2019,63(22):1900574. [72] SHEHZAD A,HA T,SUBHAN F,et al.New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases[J].European Journal of Nutrition,2011,50:151-161. [73] WANG Y R,YANG C X,NAHLA ABDALLA HASSAN E,et al.HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress[J].Aging (Albany NY),2019,11(15):5535. [74] MARSEGLIA L,MANTI S,D’ANGELO G,et al.Oxidative stress in obesity:A critical component in human diseases[J]. International Journal of Molecular Sciences,2014,16(1):378-400. [75] IZDEBSKA M,PITKOWSKA-CHMIEL I,KOROLCZUK A,et al.The beneficial effects of resveratrol on steatosis and mitochondrial oxidative stress in HepG2 cells[J].Canadian Journal of Physiology and Pharmacology,2017,95(12):1442-1453. [76] KAN J,HUI Y Y,XIE W J,et al.Lily bulbs’ polyphenols extract ameliorates oxidative stress and lipid accumulation in vitro and in vivo[J].Journal of the Science of Food and Agriculture,2021,101(12):5038-5048. [77] HAN M,YIN Y,GONG S,et al.Effects of dietary Eucommia ulmoides leaf extract supplementation on growth performance,meat quality,antioxidant capacity,and lipid metabolism of finishing pigs[J].Antioxidants,2024,13(3):320. [78] AHMADIPOUR B,KALANTAR M,ABASZADEH S,et al.Antioxidant and antihyperlipidemic effects of hawthorn extract (Crataegus oxyacantha) in broiler chickens[J].Veterinary Medicine and Science,2024,10(3):e1414. [79] 屈圣富,田琦,梅华迪,等.厚朴酚对断奶仔猪生长性能、肝脏抗氧化功能及脂代谢的影响[J].动物营养学报,2022,34(5):2872-2883.QU S F,TIAN Q,MEI H D,et al.Effects of magnolol on growth performance,liver antioxidant function and lipid metabolism of weaned piglets[J].Chinese Journal of Animal Nutrition,2022,34(5):2872-2883.(in Chinese) [80] WANG Y,CHEN X,HUANG Z,et al.Dietary ferulic acid supplementation improves antioxidant capacity and lipid metabolism in weaned piglets[J].Nutrients,2020,12(12):3811. [81] MIYOSHI M,SAITO K,JIA H,et al.Maternal protein restriction and post-weaning high-fat feeding alter plasma amino acid profiles and hepatic gene expression in mice offspring[J]. Foods,2022,11(5):753. [82] HUO L H,GAMBER K,GREELEY S,et al.Leptin-dependent control of glucose balance and locomotor activity by POMC neurons[J]. Cell Metabolism,2009,9(6):537-547. [83] VARELA L,HORVATH T L.Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis[J].EMBO Reports,2012,13(12):1079-1086. [84] SAFAHANI M,ALIGHOLI H,NOORBAKHSH F,et al.Resveratrol promotes the arcuate nucleus architecture remodeling to produce more anorexigenic neurons in high-fat-diet-fed mice[J].Nutrition,2018,50:49-59. [85] WANG X J,LIU F,CUI Y,et al.Apple polyphenols extracts ameliorate high carbohydrate diet-induced body weight gain by regulating the gut microbiota and appetite[J]. Journal of Agricultural and Food Chemistry,2021,70(1):196-210. [86] BADSHAH H,ULLAH I,KIM S E,et al.Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus[J].Neuropeptides,2013,47(5):347-353. [87] LE H T,LIE K K,GIROUD-ARGOUD J,et al.Effects of cholecystokinin (CCK) on gut motility in the stomachless fish ballan wrasse (Labrus bergylta)[J].Frontiers in Neuroscience,2019,13:553. [88] PANDA V,SHINDE P.Appetite suppressing effect of Spinacia oleracea in rats:Involvement of the short term satiety signal cholecystokinin[J].Appetite,2017,113:224-230. [89] KIM H Y,PARK M,KIM K,et al.Hesperetin stimulates cholecystokinin secretion in enteroendocrine STC-1 cells[J].Biomolecules & Therapeutics,2013,21(2):121. [90] PARK M,KIM K,LEE Y M,et al.Naringenin stimulates cholecystokinin secretion in STC-1 cells[J].Nutrition Research and Practice,2014,8(2):146-150. |
| [1] | 刘慧莹, 高丽冰, 李晓敏, 李伟, 王秋菊, 王晶. 胆汁酸和复合精油对延养期蛋鸡产蛋性能和脂质代谢的影响[J]. 中国畜牧兽医, 2025, 52(9): 4105-4113. |
| [2] | 刘纪君, 王逢博, 韦峰, 靳亚平, 张海森, 陈华涛. 昼夜节律生物钟调控糖脂代谢稳态在奶牛酮病中作用的研究进展[J]. 中国畜牧兽医, 2025, 52(7): 3449-3458. |
| [3] | 曹畅, 李玉莲, 王洁, 何情, 龚艳梅, 范志勇. 外源添加猪胆酸对高脂孕鼠体脂代谢、肠道微生物和胆汁酸代谢的影响[J]. 中国畜牧兽医, 2025, 52(5): 1999-2011. |
| [4] | 刘嗣睿, 刘洪飞, 刘大鹏, 牟启铭, 唐贺贺, 张鹤, 张永福, 侯水生, 周正奎. 整合基因组和转录组筛选调控北京鸭脂肪沉积的候选基因[J]. 中国畜牧兽医, 2025, 52(4): 1468-1477. |
| [5] | 何思琦, 陈倩, 张贺春, 陈红艳, 马月辉, 周胜花, 赵倩君. m6A甲基化在骨骼肌发育中的生物学作用及调控机制研究进展[J]. 中国畜牧兽医, 2025, 52(4): 1511-1521. |
| [6] | 李梦奇, 郑春田, 陈伟, 金成龙, 张亚男, 王爽, 李凯潮, 黄雪冰, 夏伟光, 朱元召. 低蛋白质氨基酸平衡饲粮对蛋鸭产蛋性能、蛋品质和脂质代谢的影响[J]. 中国畜牧兽医, 2025, 52(4): 1533-1542. |
| [7] | 李亚娟, 宋科林, 李杰, 张亚丽, 梁毓豪, 李瑶, 滚双宝, 高小莉. 冷应激对动物能量代谢的影响及其分子调控研究进展[J]. 中国畜牧兽医, 2025, 52(4): 1616-1626. |
| [8] | 斯日古楞, 于雯, 降晓薇, 李子怡, 金君健, 白浩宇. miR-144-5p在不同体型双峰驼血浆外泌体中的表达及靶基因验证[J]. 中国畜牧兽医, 2025, 52(3): 1022-1032. |
| [9] | 阿斯雅, 斯琴, 伊敏娜, 温鑫, 格日乐其木格. 马胎盘滋养层细胞研究进展[J]. 中国畜牧兽医, 2025, 52(11): 5063-5073. |
| [10] | 刘杰, 李胜楠, 何晨鹏, 马翔, 李春, 王中波, 肖定福. 基于组学的牛肉品质及其影响因素研究进展[J]. 中国畜牧兽医, 2025, 52(11): 5134-5146. |
| [11] | 李欢语, 张万里, 王爽, 崔省委, 马燕芬, 马云, 余永涛. 亚临床酮病奶牛血清脂类代谢物的变化特征分析[J]. 中国畜牧兽医, 2025, 52(10): 4592-4602. |
| [12] | 夏铭隆, 肖银涛, 郑塞珍, 谭碧娥, 印遇龙, 陈家顺, 尹杰. 宁乡猪不同发育阶段肌内脂肪沉积差异表达基因及其调控通路分析[J]. 中国畜牧兽医, 2024, 51(9): 3703-3714. |
| [13] | 陈翔宇, 黄元, 刘宝玲, 罗琴, 陆泳锟, 何振文, 刘丁语, 乔常宏, 王晓虎, 王刚, 白挨泉, 蔡汝健. 猪链球菌生物被膜的形成及其耐药机制研究进展[J]. 中国畜牧兽医, 2024, 51(9): 4002-4013. |
| [14] | 罗琴, 刘宝玲, 乔常宏, 陈翔宇, 刘丁语, 王晓虎, 王刚, 刘昊, 蔡汝健. 脂质代谢和糖代谢在PRRSV感染宿主细胞中作用研究进展[J]. 中国畜牧兽医, 2024, 51(4): 1686-1695. |
| [15] | 吴青瑶, 殷运菊, 王敏, 潘俊毅, 李凤娜, 赵生国, 陈国顺, 郭秋平. 绿原酸与亮氨酸协同对育肥猪胴体性状、肉品质及血清生化指标的影响[J]. 中国畜牧兽医, 2024, 51(3): 1060-1068. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||